Today's Class

- Part 1: Pervasive Computing
- Part 2: Multimedia computing

Lecture 27, page 1

Pervasive Computing

- Computing is becoming increasingly ubiquitous
- Sensing and computing "everywhere"
 - Increasingly part of physical environments
 - Enables many new application domains

Internet of Things (IoT)

- Miniaturization of computing
 - Tiny sensors with computing and communication capability
 - MEMS: MicroElectroMechanical Systems
 - Expectation: Moore's law-like growth in MEMS
- Rise of internet of things
 - Network of Physical Devices
 - Ability to network devices and have them communicate
 - Large network of sensors

Smart Health

- Early Wearables devices
 - Fitness, exercise tracking
 - Sleep, heart rate, ...
- New technologies emerging:

Smart Clothing

On-body monitoring

Smart Glasses

Gaze tracking, fatigue detection

4

Smart Buildings

• Proliferation of smart devices in homes



- Thermostat
- Smart Plug

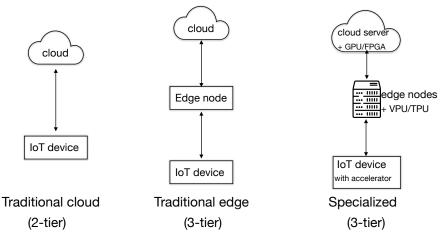
Smart Appliances

Smart Transportation

- Smart Roadways
 - Reactive Lights/Dynamic Lanes
 - Road Condition Monitoring
 - Traffic Management
- Connected Cars
 - Accident avoidance
 - Fleet Management
 - Real time public transport alerts

Typical smart app

- Personal device to mobile phone to the cloud
 - Upload data to cloud via a mobile device (or directly)
 - Low-power communication to phone
 - Cloud provides analytics and provides feedback to phone
- Environmental sensors to internet to the cloud
 - Internet-enabled sensors
 - Upload to directly to servers / cloud through a router
 - Cloud provides analytics and provides dashboard



IoT Architectures

• Offload to cloud, edge, specialized edge,

CS677: Distributed and Operating Systems

Specialized Edge Computing

- Edge accelerators: special hardware to accelerate edge tasks on resource constrained edge servers
 - Nvidia Jetson GPU, Google edge Tensor processing Unit (TUP), Intel Vision Processing Unit (VPU)
- Example: IoT ML inference on edge accelerators
 - Efficient inference on resource-constrained edge servers

Apple Neural Engine

Lecture 27, page 9

Google Edge TPU

Nvidia Jetson Nano GPU

CS677: Distributed and Operating Systems

Sensor Platform

- Smart devices are a sensor node
- Resource-constrained distributed system
- Typical Sensor platform
 - Small CPUs
 - E.g. 8bit, 4k RAM
 - Low-power radios for communication
 - 10-200kbit/sec
 - Sensors
 - Battery driven or self-powered
 - Flash storage

Small CPUs

- Example: Atmel AVR
 - 8 bit
 - 4 KB RAM
 - 128 KB flash on-chip
 - ~8 mA

• Example: TI MSP430

- 16 bit
- 10 KB RAM
- 48 KB flash
- 2 mA

MSPEBICION ELECK DIAGRAM VCC VCS P1 + FLAG 2000 P1 + FLAG 200

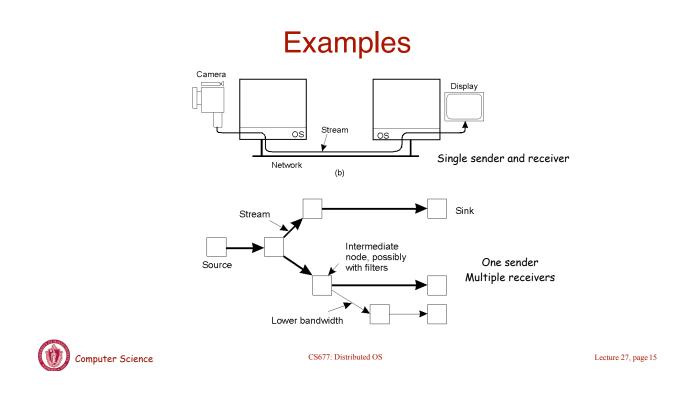
Higher-powered processors:

- ARM7 32 bit, 50 MHz, >>1MB RAM
- ARM9 32 bit, 400 MHz, >>16MB RAM

Low Power Radios

- Industrial, Scientific and Medical (ISM) Band
 - 900 MHz (33 cm), 2400 MHz (Bluetooth)
- Varying modulation and protocol
 - Zigbee (IEEE 802.15.4) Modulating Phase
 - Bluetooth (IEEE 802.15.1) Modulating Frequency
- Short range
 - Typically <100 m
- Low power. E.g. Chipcon CC2420:
 - 9-17 mA transmit (depending on output level)
 - 19 mA receive
- Listening can take more energy than transmitting

Sensors


- Temperature
- Humidity
- Magnetometer
- Vibration
- Acoustic
- Light
- Motion (e.g. passive IR)
- Imaging (cameras)
- Accelerometer
- GPS
- Lots of others...

Multimedia Computing

- Message-oriented communication: request-response
 - When communication occurs and speed do not affect correctness
- Timing is crucial in certain forms of communication
 - Examples: audio and video ("continuous media")
 - 30 frames/s video => receive and display a frame every 33ms
- Characteristics of Video streaming
 - Isochronous communication
 - Data transfers have a maximum bound on end-end delay and jitter
 - Push mode: no explicit requests for individual data units beyond the first "play" request

Streams and Quality of Service

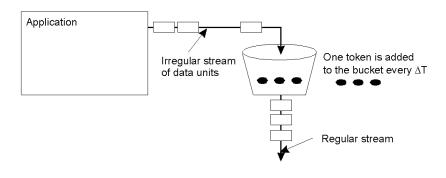
- Properties for Quality of Service:
- The required bit rate at which data should be transported.
- The maximum delay until a session has been set up
- The maximum end-to-end delay .
- The maximum delay variance, or jitter.
- The maximum round-trip delay.

Quality of Service (QoS)

• Time-dependent and other requirements are specified as quality of service (QoS)

- Requirements/desired guarantees from the underlying systems
- Application specifies workload and requests a certain service quality
- Contract between the application and the system

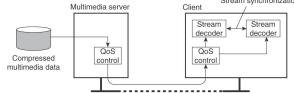
Characteristics of the Input	Service Required
 maximum data unit size (bytes) Token bucket rate (bytes/sec) Toke bucket size (bytes) Maximum transmission rate (bytes/sec) 	 Loss sensitivity (bytes) Loss interval (μsec) Burst loss sensitivity (data units) Minimum delay noticed (μsec) Maximum delay variation (μsec) Quality of guarantee



Computer Science

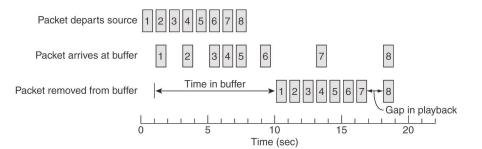
CS677: Distributed OS

Lecture 27, page 17

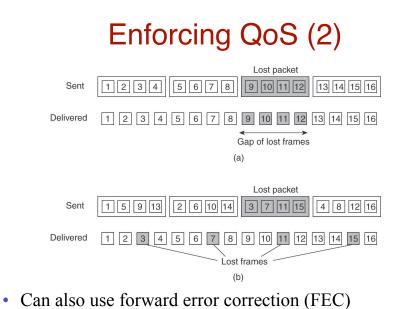

Specifying QoS: Token bucket

- The principle of a token bucket algorithm
 - Parameters (rate r, burst b)
 - Rate is the average rate, burst is the maximum number of packets that can arrive simultaneously

Enforcing QoS Stream synchronization

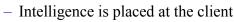

- Enforce at ena-points (e.g., token bucket)
 - No network support needed
- Mark packets and use router support
 - Differentiated services: expedited & assured forwarding
- Use buffers at receiver to mask jitter
- Packet losses
 - Handle using forward error correction
 - Use interleaving to reduce impact

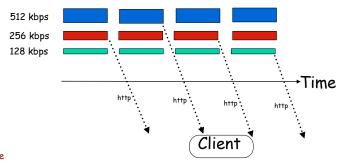
Computer Science


CS677: Distributed OS

Lecture 27, page 19

Enforcing QoS (1)





Lecture 27, page 21

HTTP Streaming

- UDP is inherently better suited for streaming
 - Adaptive streaming, specialized streaming protocols
- Yet, almost all streaming occurs over HTTP (and TCP)
 - Universal availability of HTTP, no special protocol needed
- Direct Adaptive Streaming over HTTP (DASH)

Stream synchronization

- Multiple streams:
 - Audio and video; layered video
- Need to sync prior to playback
 - Timestamp each stream and sync up data units prior to playback
- Sender or receiver?
- App does low-level sync
 - 30 fps: image every 33ms, lip-sync with audio
- Use middleware and specify playback rates

CS677: Distributed OS

Lecture 27, page 23