
Computer Science Lecture 27, page

Today’s Class
• Part 1: Pervasive Computing
• Part 2: Multimedia computing

1

Computer Science

Pervasive Computing

• Computing is becoming increasingly ubiquitous

• Sensing and computing “everywhere”
• Increasingly part of physical environments

• Enables many new application domains

2

Smart Health Smart Buildings Smart Transportation Smart Agriculture

Computer Science

Internet of Things (IoT)

• Miniaturization of computing
• Tiny sensors with computing and communication capability

• MEMS: MicroElectroMechanical Systems

• Expectation: Moore’s law-like growth in MEMS

• Rise of internet of things
• Network of Physical Devices

• Ability to network devices and have them communicate

• Large network of sensors

Computer Science

Smart Health

• Early Wearables devices
• Fitness, exercise tracking

• Sleep, heart rate, …

• New technologies emerging:

4

Smart GlassesSmart Clothing

On-body monitoring Gaze tracking, fatigue detection

Computer Science

Smart Buildings

• Proliferation of smart devices in homes

• Phone and voice interfaces:

5

Thermostat Smart Plug Smart Appliances Smart Lock

Computer Science

Smart Transportation

• Smart Roadways
• Reactive Lights/Dynamic Lanes

• Road Condition Monitoring

• Traffic Management

• Connected Cars
• Accident avoidance

• Fleet Management

• Real time public transport alerts

6

Computer Science

Typical smart app

• Personal device to mobile phone to the cloud
• Upload data to cloud via a mobile device (or directly)

• Low-power communication to phone

• Cloud provides analytics and provides feedback to phone

• Environmental sensors to internet to the cloud
• Internet-enabled sensors

• Upload to directly to servers / cloud through a router

• Cloud provides analytics and provides dashboard

Lecture 27, page

 IoT Architectures

8CS677: Distributed and Operating Systems

• Offload to cloud, edge, specialized edge,

Traditional cloud

 (2-tier)

Traditional edge

 (3-tier)

Specialized

 (3-tier)

IoT device

cloud

Edge node

cloud

IoT device

edge nodes
+ VPU/TPU

IoT device
with accelerator

cloud server
+ GPU/FPGA

Lecture 27, page

Specialized Edge Computing

9CS677: Distributed and Operating Systems

• Edge accelerators: special hardware to accelerate edge
tasks on resource constrained edge servers
– Nvidia Jetson GPU, Google edge Tensor processing Unit

(TUP), Intel Vision Processing Unit (VPU)
• Example: IoT ML inference on edge accelerators

– Efficient inference on resource-constrained edge servers

Google Edge TPU Nvidia Jetson Nano GPU Apple Neural

Engine

Computer Science

Sensor Platform

• Smart devices are a sensor node

• Resource-constrained distributed system

• Typical Sensor platform
• Small CPUs

• E.g. 8bit, 4k RAM

• Low-power radios for communication

• 10-200kbit/sec

• Sensors

• Battery driven or self-powered

• Flash storage

Computer Science

Small CPUs

• Example: Atmel AVR
• 8 bit

• 4 KB RAM

• 128 KB flash on-chip

• ~8 mA

• Example: TI MSP430
• 16 bit

• 10 KB RAM

• 48 KB flash

• 2 mA

Higher-powered processors:
• ARM7 - 32 bit, 50 MHz, >>1MB RAM
• ARM9 - 32 bit, 400 MHz, >>16MB RAM

Computer Science

Low Power Radios

• Industrial, Scientific and Medical (ISM) Band
• 900 MHz (33 cm), 2400 MHz (Bluetooth)

• Varying modulation and protocol
• Zigbee (IEEE 802.15.4) – Modulating Phase
• Bluetooth (IEEE 802.15.1) – Modulating Frequency

• Short range
• Typically <100 m

• Low power. E.g. Chipcon CC2420:
• 9-17 mA transmit (depending on output level)
• 19 mA receive

• Listening can take more energy than transmitting

Computer Science

Sensors

• Temperature

• Humidity

• Magnetometer

• Vibration

• Acoustic

• Light

• Motion (e.g. passive IR)

• Imaging (cameras)

• Accelerometer

• GPS

• Lots of others…

Computer Science Lecture 27, page CS677: Distributed OS

Multimedia Computing
• Message-oriented communication: request-response

– When communication occurs and speed do not affect correctness
• Timing is crucial in certain forms of communication

– Examples: audio and video (“continuous media”)
– 30 frames/s video => receive and display a frame every 33ms

• Characteristics of Video streaming
• Isochronous communication

• Data transfers have a maximum bound on end-end delay and
jitter

– Push mode: no explicit requests for individual data units beyond
the first “play” request

14

Computer Science Lecture 27, page CS677: Distributed OS

Examples

Single sender and receiver

One sender
Multiple receivers

15

Computer Science Lecture 27, page

Streams and Quality of Service
• Properties for Quality of Service:
• The required bit rate at which data should be

transported.
• The maximum delay until a session has been set up
• The maximum end-to-end delay .
• The maximum delay variance, or jitter.
• The maximum round-trip delay.

16

Computer Science Lecture 27, page CS677: Distributed OS

Quality of Service (QoS)
• Time-dependent and other requirements are specified as quality of service (QoS)

– Requirements/desired guarantees from the underlying systems
– Application specifies workload and requests a certain service quality
– Contract between the application and the system

Characteristics of the Input Service Required

•maximum data unit size (bytes)
•Token bucket rate (bytes/sec)
•Toke bucket size (bytes)
•Maximum transmission rate (bytes/
sec)

•Loss sensitivity (bytes)
•Loss interval (µsec)
•Burst loss sensitivity (data units)
•Minimum delay noticed (µsec)

•Maximum delay variation (µsec)
•Quality of guarantee

17

Computer Science Lecture 27, page CS677: Distributed OS

Specifying QoS: Token bucket

• The principle of a token bucket algorithm
– Parameters (rate r, burst b)
– Rate is the average rate, burst is the maximum number of packets that can arrive simultaneously

18

Computer Science Lecture 27, page CS677: Distributed OS

Enforcing QoS

• Enforce at end-points (e.g., token bucket)
– No network support needed

• Mark packets and use router support
– Differentiated services: expedited & assured forwarding

• Use buffers at receiver to mask jitter
• Packet losses

– Handle using forward error correction
– Use interleaving to reduce impact

19

Computer Science Lecture 27, page

Enforcing QoS (1)

20

Computer Science Lecture 27, page

Enforcing QoS (2)

• Can also use forward error correction (FEC)

21

Computer Science Lecture 27, page

HTTP Streaming
• UDP is inherently better suited for streaming

– Adaptive streaming, specialized streaming protocols
• Yet, almost all streaming occurs over HTTP (and TCP)

– Universal availability of HTTP, no special protocol needed
• Direct Adaptive Streaming over HTTP (DASH)

– Intelligence is placed at the client

22

Time

128 kbps
256 kbps

512 kbps

Client

http http http http

Computer Science Lecture 27, page CS677: Distributed OS

Stream synchronization
• Multiple streams:

– Audio and video; layered video
• Need to sync prior to playback

– Timestamp each stream and sync up data units prior to
playback

• Sender or receiver?
• App does low-level sync

– 30 fps: image every 33ms, lip-sync with audio
• Use middleware and specify playback rates

23

